Home / Network / WLAN / Wifi / A novel beamforming based model of coverage and transmission costing in IEEE 802.11 WLAN networks

A novel beamforming based model of coverage and transmission costing in IEEE 802.11 WLAN networks

The next figure shows a unified Wlan architecture that could help overcome current standalone network limitations.

In this paper, the authors consider beamforming and costing techniques to augment conventional RRM’s Transmit Power Control (TPC) procedures that market-leading vendors has implemented and related research has worked on. They present a novel approach of radio coverage modelization and prove its additions to the cited related-work’s models. The proposed solution model runs three algorithms to
evaluate transmission opportunities of Wireless Devices (WD) under the coverage area. It builds on realistic hypotheses and a thorough system operation’s understanding to evaluate such an opportunity to transmit, overcomes limitations from compared related-work’s models, and integrates a hierarchical costing system to match Service Level Agreement (SLA) expectations. The term “opportunity” in this context relates also to the new transmission’s possibilities that related-work misses often or overestimates.

Pages: 1 2 3

Tagged:

Leave a Reply

802.11 (4) application (2) architecture (4) asm (4) automatisation (2) cagd (3) chd (2) cisco (6) command (5) controller (1) cost (6) coverage (5) debug (10) distance (6) dtls (2) dynamic rrm (5) firewall (2) fortinet (2) ieee (4) igmp (5) igp (8) interference (2) internet (3) ip (2) logique (2) loop (5) mac (3) machine learning (3) meraki (1) model (2) mpls (3) mroute (4) multicast (5) nat (2) ndp (2) network (3) next-hop (5) nurbs (3) osi (6) pat (2) pim (4) poisoning (6) projet (2) qos (2) radio (5) rib (5) rip (5) route (6) router (6) routing (15) rpf (4) rrm (10) security (3) show (5) simulation (2) sla (2) snr (2) solution (2) split-horizon (5) sql (1) ssl (2) ssm (4) static (6) stp (2) summarization (5) tcp (2) translation (1) travail (2) udp (2) vpn (3) vrf (3) wifi (11) wireshark (2) wlan (7) wlc (5)

October 2025
M T W T F S S
 12345
6789101112
13141516171819
20212223242526
2728293031  
Copied!